Отражение света - definition. What is Отражение света
Diclib.com
قاموس ChatGPT
أدخل كلمة أو عبارة بأي لغة 👆
اللغة:     

ترجمة وتحليل الكلمات عن طريق الذكاء الاصطناعي ChatGPT

في هذه الصفحة يمكنك الحصول على تحليل مفصل لكلمة أو عبارة باستخدام أفضل تقنيات الذكاء الاصطناعي المتوفرة اليوم:

  • كيف يتم استخدام الكلمة في اللغة
  • تردد الكلمة
  • ما إذا كانت الكلمة تستخدم في كثير من الأحيان في اللغة المنطوقة أو المكتوبة
  • خيارات الترجمة إلى الروسية أو الإسبانية، على التوالي
  • أمثلة على استخدام الكلمة (عدة عبارات مع الترجمة)
  • أصل الكلمة

%ما هو (من)٪ 1 - تعريف

Полное внутреннее отражение; Внутреннее отражение электромагнитных волн; Неполное внутреннее отражение; Полное отражение; Отражение полное
  • Отражение рыбы на поверхности раздела воздух-вода.
  • Пример
  • Полное внутреннее отражение света
  • Видеоурок: полное внутреннее отражение

ОТРАЖЕНИЕ СВЕТА      
возвращение световой волны при ее падении на поверхность раздела двух сред с различными показателями преломления "обратно" в первую среду. Различают отражение света зеркальное (размеры l неровностей на поверхности раздела меньше длины световой волны ?) и диффузное (l ? ?). Наблюдаемое отражение света - комбинация этих двух предельных случаев. Благодаря отражению света мы видим объекты, не излучающие свет.
Отражение света      

явление, заключающееся в том, что при падении света (оптического излучения (См. Оптическое излучение)) из одной среды на границу её раздела со 2-й средой взаимодействие света с веществом приводит к появлению световой волны, распространяющейся от границы раздела "обратно" в 1-ю среду. (При этом по крайней мере 1-я среда должна быть прозрачна для падающего и отражаемого излучения.) Несамосветящиеся тела становятся видимыми вследствие О. с. от их поверхностей.

Пространственное распределение интенсивности отражённого света определяется отношением размеров неровностей поверхности (границы раздела) к длине волны λ падающего излучения. Если неровности малы по сравнению с λ, имеет место правильное, или зеркальное, О. с. Когда размеры неровностей соизмеримы с λ или превышают её (шероховатые поверхности, матовые поверхности (См. Матовая поверхность)) и расположение неровностей беспорядочно, О. с. диффузно. Возможно также смешанное О. с., при котором часть падающего излучения отражается зеркально, а часть - диффузно. Если же неровности с размерами Отражение света λ и более расположены закономерно (регулярно), распределение отражённого света имеет особый характер, близкий к наблюдаемому при О. с. от дифракционной решётки (См. Дифракционная решётка). О. с. тесно связано с явлениями преломления света (См. Преломление света) (при полной или неполной прозрачности отражающей среды) и поглощения света (См. Поглощение света) (при её неполной прозрачности или непрозрачности).

Зеркальное О. с. отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения φ. Интенсивность отражённого света (характеризуемая Отражения коэффициентом) зависит от φ и поляризации падающего пучка лучей (см. Поляризация света), а также от соотношения преломления показателей (См. Преломления показатель) n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика (См. Диэлектрики)) выражают Френеля формулы. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен (n2 - n1)2/(n2 + n1)2; в очень важном частном случае нормального падения из воздуха или стекла на границу их раздела (nвозд ≈ 1,0; n = 1,5) он составляет ≈ 4\%.

Характер поляризации отражённого света меняется с изменением φ и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации (См. Плоскость поляризации) при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах φ, равных так называемому углу Брюстера (см. Брюстера закон), отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального О. с. используют в ряде поляризационных приборов (См. Поляризационные приборы). При φ, бо́льших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением φ, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном О. с., как явствует из формул Френеля, Фаза отражённого света в общем случае скачкообразно изменяется. Если φ = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на π, при n2 < n1 - остаётся неизменной. Сдвиг фазы при О. с. в случае φ ≠ 0 может быть различен для р- и s-составляющих падающего света в зависимости от того, больше или меньше φ угла Брюстера, а также от соотношения n2 и n1. О. с. от поверхности оптически менее плотной среды (n2 < n1) при sin φ ≥ n2 / n1 является полным внутренним отражением (См. Полное внутреннее отражение), при котором вся энергия падающего пучка лучей возвращается в 1-ю среду. Зеркальное О. с. от поверхностей сильно отражающих сред (например, металлов) описывается формулами, подобными формулам Френеля, с тем (правда, весьма существенным) изменением, что n2 становится комплексной величиной, мнимая часть которой характеризует поглощение падающего света. Поглощение в отражающей среде приводит к отсутствию угла Брюстера и более высоким (в сравнении с диэлектриками) значениям коэффициента отражения - даже при нормальном падении он может превышать 90\% (именно этим объясняется широкое применение гладких металлических и металлизированных поверхностей в зеркалах (См. Зеркало)).

Отличаются и поляризационные характеристики отражённых от поглощающей среды световых волн (вследствие иных сдвигов фаз р- и s-составляющих падающих волн). Характер поляризации отражённого света настолько чувствителен к параметрам отражающей среды, что на этом явлении основаны многочисленные оптические методы исследования металлов (см. Магнитооптика, Металлооптика).

Диффузное О. с. - его рассеивание неровной поверхностью 2-й среды по всем возможным направлениям. Пространственное распределение отражённого потока излучения (См. Поток излучения) и его интенсивность различны в разных конкретных случаях и определяются соотношением между λ и размерами неровностей, распределением неровностей по поверхности, условиями освещения, свойствами отражающей среды. Предельный, строго не выполняющийся в природе случай пространственного распределения диффузно отражённого света описывается Ламберта законом. Диффузное О. с. наблюдается также от сред, внутренняя структура которых неоднородна, что приводит к рассеянию света (См. Рассеяние света) в объёме среды и возвращению части его в 1-ю среду. Закономерности диффузного О. с. от таких сред определяются характером процессов однократного и многократного рассеяния света в них. И поглощение, и рассеяние света могут обнаруживать сильную зависимость от λ. Результатом этого является изменение спектрального состава диффузно отражённого света, что (при освещении белым светом (См. Белый свет)) визуально воспринимается как окраска тел.

Лит.: Ландсберг Г. С., Оптика, 4 изд., М., 1957 (Общий курс физики, т. 3); Борн М., Вольф Э., Основы оптики, пер. с англ.,2 изд., М., 1973; Дитчбёрн Р., Физическая оптика, пер. с англ., М., 1965; Миннарт М., Свет и цвет в природе, пер. с англ., М., 1958; Бреховских Л. М., Волны в слоистых средах, М., 1957; Толанский С., Удивительные свойства света, пер. с англ., М., 1969.

Н. А. Войшвилло.

Рис. 1. Зеркальное отражение света: N - нормаль к отражающей поверхности (границе раздела); φ - угол между падающим лучом и нормалью (угол падения); ψ - угол между отражённым лучом и нормалью (угол отражения); φ = ψ. Ep, Rp, Es и Rs - компоненты амплитуд электрич. вектора падающей и отражённой волн с колебаниями, соответственно лежащими в плоскости падения и перпендикулярными к ней. Стрелками показаны выбранные положительные направления амплитуд колебаний.

Рис. 2. Зависимость от угла падения φ коэффициентов отражения rp и rs; составляющих падающей волны, поляризованных, соответственно, параллельно и перпендикулярно плоскости падения. Кривые 1 относятся к случаю n2/n1 = 1,52, кривые 2 - к случаю n2/n1 = 9. Верхняя шкала φ относится к случаю n2/n1 = 1/1,52.

ПОЛНОЕ ВНУТРЕННЕЕ ОТРАЖЕНИЕ         
электромагнитных волн , происходит при их наклонном падении на границу раздела 2 сред, когда излучение проходит из среды с большим показателем преломления n1 в среду с меньшим показателем преломления n2, а угол падения i превышает предельный угол iпр, определяемый соотношением: sin(iпр) = n2/n1.

ويكيبيديا

Внутреннее отражение

Вну́треннее отраже́ние — явление отражения электромагнитных или звуковых волн от границы раздела двух сред при условии, что волна падает из среды, где скорость её распространения меньше (в случае световых лучей это соответствует бо́льшему показателю преломления).

Неполное внутреннее отражение — внутреннее отражение при условии, что угол падения меньше критического угла. В этом случае луч раздваивается на преломлённый и отражённый.

Полное внутреннее отражение — внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.

В оптике это явление наблюдается для широкого спектра электромагнитного излучения, включая рентгеновский диапазон.

В геометрической оптике явление объясняется в рамках закона Снеллиуса. Учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего показателя преломления к большему показателю, электромагнитная волна должна полностью отражаться в первую среду.

θ c = arcsin ( n 2 n 1 ) . {\displaystyle \theta _{\rm {c}}=\arcsin \!\left({\frac {n_{2}}{n_{1}}}\right).}

Угол θ c {\displaystyle \theta _{\rm {c}}} представляет собой наименьший угол падения, при котором наблюдается полное внутреннее отражение. Его называют предельным или критическим углом. Используется также наименование «угол полного отражения».

В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду — там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.

Впервые явление полного внутреннего отражения было описано Иоганном Кеплером в 1600 году.

Нарушенное полное внутреннее отражение — явление нарушения полного внутреннего отражения из-за поглощения отражающей средой части излучения. Широко применяется в лабораторной практике и оптической промышленности.

أمثلة من مجموعة نصية لـ٪ 1
1. Затем стаканчики помещали в темноту, чтобы исключить отражение света, которое могло помешать отражению других излучений.
2. Она-то и обеспечивает столь хорошее отражение света самых разных длин волн.
3. Но можно воспользоваться обычными люминесцентными лампами мощностью 60 - 80 Вт, их подвешивают непосредственно над кустиками или обеспечивают отражение света с помощью зеркала, фольги.
4. Прежде конструкторы пытались построить компьютерное зрение на основе радаров или аналогичных систем, использующих отражение света, но с их помощью автомобиль мог замечать только самые крупные препятствия и никак не мог определить, где он едет.
5. В ходе экспериментов источник звука перемещали в разные стороны от птицы - как по вертикали, так и по горизонтали, при этом с помощью специальной аппаратуры, фиксировавшей отражение света от роговицы глаза, отслеживали, как ведут себя зрачки сипухи, в каком случае расширяются больше или меньше, тем самым определялась реакция пернатого.
What is ОТРАЖЕНИЕ СВЕТА - definition